In [3]:
import pandas as pd
import numpy as np
In [6]:
integrins = pd.read_excel("/Users/reneewang/Downloads/gtex_integrin_7_organs.xlsx")
integrins
Out[6]:
Unnamed: 0 primary_site ITGA10 ITGAD ITGAM ITGA3 ITGBL1 ITGAE ITGA2 ITGB3 ... ITGA6 ITGA2B ITGB1 ITGAL ITGA9 ITGB5 ITGA8 ITGA4 ITGA1 ITGA11
0 GTEX-13QIC-0011-R1a-SM-5O9CJ Brain 0.5763 -6.5064 2.2573 0.7832 1.0363 4.6035 2.5731 -2.8262 ... 2.8562 1.3846 5.8430 1.1316 -0.7108 3.5387 -0.0725 -0.4521 0.2029 -2.8262
1 GTEX-1399S-1726-SM-5L3DI Lung 4.9137 -3.6259 4.7307 7.1584 1.7702 4.9556 1.9149 2.6067 ... 4.2412 4.1211 7.7256 4.4900 2.9281 6.1483 5.1867 2.6185 4.7856 -0.0277
2 GTEX-PWCY-1326-SM-48TCU Ovary 2.3953 -5.0116 1.4547 4.2593 -0.7346 4.4149 0.2642 1.5216 ... 3.6816 1.5465 7.2964 -0.9406 2.7742 5.0414 2.0325 0.7579 2.2573 1.2516
3 GTEX-QXCU-0626-SM-2TC69 Lung 4.0541 -2.3147 4.5053 7.5651 4.1788 4.1772 5.3695 1.8444 ... 4.9631 1.9149 7.9947 3.3911 2.8462 6.7683 4.1636 2.7951 5.3284 1.2147
4 GTEX-ZA64-1526-SM-5CVMD Breast 2.0569 -2.4659 3.3993 3.1311 3.0074 4.4977 -1.7809 2.7139 ... 4.7340 0.6332 7.3496 -0.9406 2.5338 6.5696 1.7229 -0.6416 3.1195 1.1050
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1982 GTEX-QMRM-0826-SM-3NB33 Lung 5.3067 -3.8160 4.9065 7.5810 5.8714 4.7345 2.6185 3.1095 ... 5.6080 3.7324 8.2849 4.6201 3.6440 6.7052 5.1094 3.3364 5.8153 1.6604
1983 GTEX-YFCO-1626-SM-4W1Z3 Prostate 2.9581 -4.6082 1.1641 4.6938 1.5902 5.8625 -0.5125 1.7617 ... 3.8798 -1.4699 7.5163 -0.3752 2.9562 5.3035 4.4304 -0.9406 3.6136 0.4233
1984 GTEX-1117F-2826-SM-5GZXL Breast 4.3184 -6.5064 1.0433 4.8440 3.5498 4.6809 1.0293 3.3478 ... 5.3256 -0.0725 7.7516 1.1382 2.1411 7.1132 0.3796 0.0854 3.8650 1.0151
1985 GTEX-Q2AG-2826-SM-2HMJQ Brain 3.4622 -5.5735 1.5013 5.4835 1.7702 4.7517 0.6790 -3.1714 ... 1.1960 4.1740 4.3002 0.5470 -0.9971 3.7982 -0.2498 1.4808 -0.5125 -0.5125
1986 GTEX-XV7Q-0426-SM-4BRVN Lung 2.5585 -1.7809 6.7916 6.5865 2.7051 4.9519 4.3618 3.1892 ... 3.5779 2.8974 7.7685 4.8294 1.9149 5.9989 2.4117 2.4198 4.2080 1.0007

1987 rows × 29 columns

In [7]:
brain_integrins = integrins[integrins['primary_site'] == 'Brain']
brain_integrins
Out[7]:
Unnamed: 0 primary_site ITGA10 ITGAD ITGAM ITGA3 ITGBL1 ITGAE ITGA2 ITGB3 ... ITGA6 ITGA2B ITGB1 ITGAL ITGA9 ITGB5 ITGA8 ITGA4 ITGA1 ITGA11
0 GTEX-13QIC-0011-R1a-SM-5O9CJ Brain 0.5763 -6.5064 2.2573 0.7832 1.0363 4.6035 2.5731 -2.8262 ... 2.8562 1.3846 5.8430 1.1316 -0.7108 3.5387 -0.0725 -0.4521 0.2029 -2.8262
8 GTEX-N7MS-2526-SM-26GMA Brain 2.2960 -9.9658 0.6608 5.2840 0.4233 4.8510 -0.2671 -0.1031 ... 1.5415 4.6623 3.4687 0.5666 -0.0130 3.0654 0.7916 1.0433 -0.7346 -0.7588
10 GTEX-N7MS-2526-SM-26GMR Brain -0.2498 -9.9658 -0.8863 3.1685 -1.6394 2.8158 -0.4719 -1.1488 ... 1.6045 0.9268 2.8055 -0.5973 0.4657 1.8918 0.3460 0.3907 -1.9942 -1.5522
12 GTEX-NPJ7-0011-R6a-SM-2I3G7 Brain 1.6045 -6.5064 2.3193 3.6335 -2.3147 5.0670 -0.8863 -0.8084 ... 3.2018 1.7575 4.6894 0.4125 -0.6643 3.6916 -0.6193 -2.2447 1.2023 -1.9942
14 GTEX-132Q8-3026-SM-5PNVG Brain 2.8974 -6.5064 1.9601 4.1836 -0.8084 4.5892 -0.5543 0.3460 ... 3.6018 2.7931 4.7274 -0.0574 1.2271 4.3793 0.8488 -0.2159 2.1378 -0.6416
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1977 GTEX-13G51-0011-R6b-SM-5LZX4 Brain -0.3383 -6.5064 1.6234 2.7487 -2.2447 5.2415 -0.8863 -2.9324 ... 2.1988 0.4016 4.5142 -1.1811 -0.8084 3.9983 -1.0862 -3.1714 -0.7588 -1.9379
1978 GTEX-YFC4-0011-R10a-SM-4SOK5 Brain 0.4447 -5.5735 0.3231 3.5237 -1.5105 4.9016 0.9419 -2.7274 ... 2.8178 1.3567 4.4621 -0.2845 1.0222 3.3336 0.1903 -1.0559 0.0300 -0.4719
1980 GTEX-13112-0011-R4b-SM-5DUXL Brain 0.6969 -6.5064 -0.9686 2.3760 -2.2447 4.0739 -0.6193 -4.0350 ... 2.7357 1.5806 4.6882 -0.9971 -0.5756 3.5136 0.9343 -1.0862 0.4340 -2.2447
1981 GTEX-1313W-0011-R1b-SM-5EQ4A Brain 0.1124 -5.0116 2.2482 2.8897 -0.5125 4.6445 0.3115 -3.6259 ... 2.1147 0.9716 5.1202 0.6608 0.4761 3.2343 0.8408 -0.0574 -0.1828 -2.5479
1985 GTEX-Q2AG-2826-SM-2HMJQ Brain 3.4622 -5.5735 1.5013 5.4835 1.7702 4.7517 0.6790 -3.1714 ... 1.1960 4.1740 4.3002 0.5470 -0.9971 3.7982 -0.2498 1.4808 -0.5125 -0.5125

1152 rows × 29 columns

In [9]:
# Import the required libraries
import matplotlib.pyplot as plt
import seaborn as sns

# violin plot for all the genes of the brain
plt.figure(figsize = (16, 6))
sns.violinplot(data = brain_integrins)
plt.title("Integrin Genes of the Brain")
plt.xlabel("Integrin Genes")
plt.ylabel("Gene Expression Levels")
plt.show()
No description has been provided for this image
In [10]:
lung_integrins = integrins[integrins['primary_site'] == 'Lung']
lung_integrins
Out[10]:
Unnamed: 0 primary_site ITGA10 ITGAD ITGAM ITGA3 ITGBL1 ITGAE ITGA2 ITGB3 ... ITGA6 ITGA2B ITGB1 ITGAL ITGA9 ITGB5 ITGA8 ITGA4 ITGA1 ITGA11
1 GTEX-1399S-1726-SM-5L3DI Lung 4.9137 -3.6259 4.7307 7.1584 1.7702 4.9556 1.9149 2.6067 ... 4.2412 4.1211 7.7256 4.4900 2.9281 6.1483 5.1867 2.6185 4.7856 -0.0277
3 GTEX-QXCU-0626-SM-2TC69 Lung 4.0541 -2.3147 4.5053 7.5651 4.1788 4.1772 5.3695 1.8444 ... 4.9631 1.9149 7.9947 3.3911 2.8462 6.7683 4.1636 2.7951 5.3284 1.2147
5 GTEX-11EI6-0826-SM-5985V Lung 6.0732 -2.4659 3.9901 7.3945 4.7688 5.1157 4.3356 2.3366 ... 3.7378 4.7247 7.5016 5.1396 2.5036 6.5443 4.6531 3.8136 5.8679 0.7407
6 GTEX-S341-0326-SM-2XCAU Lung 4.2510 -5.0116 3.3076 6.1715 3.1129 5.2954 2.2960 1.1184 ... 4.7104 2.7530 7.5022 4.0730 2.6325 6.0483 5.0562 2.6962 5.1611 0.9343
7 GTEX-WY7C-0426-SM-3NB3C Lung 3.3633 -2.5479 4.8340 6.6864 3.0585 4.8294 2.6464 0.7999 ... 5.1190 1.5013 8.0260 3.6635 3.2435 5.8503 5.2991 2.8076 4.7571 -0.1345
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1962 GTEX-Q2AH-0426-SM-2I3EP Lung 5.9644 -1.3921 5.1061 6.9470 3.8973 4.8630 3.6089 3.9765 ... 5.1115 4.9041 7.9145 4.5559 3.7138 6.5782 4.7512 2.9710 5.0777 1.8444
1970 GTEX-RWS6-0226-SM-2XCA9 Lung 6.0830 -0.5756 4.3889 6.7302 4.6053 5.1065 2.8321 0.9716 ... 5.8176 2.5437 7.7929 4.9012 2.7993 6.7510 5.2204 2.8422 5.0951 -0.3201
1975 GTEX-131XE-0726-SM-5HL9K Lung 3.7971 -1.9379 4.8555 6.4052 3.9561 5.4263 3.2959 4.5199 ... 4.6697 6.5777 7.5114 5.2130 2.3816 6.6225 3.7389 3.7248 5.6809 0.8488
1982 GTEX-QMRM-0826-SM-3NB33 Lung 5.3067 -3.8160 4.9065 7.5810 5.8714 4.7345 2.6185 3.1095 ... 5.6080 3.7324 8.2849 4.6201 3.6440 6.7052 5.1094 3.3364 5.8153 1.6604
1986 GTEX-XV7Q-0426-SM-4BRVN Lung 2.5585 -1.7809 6.7916 6.5865 2.7051 4.9519 4.3618 3.1892 ... 3.5779 2.8974 7.7685 4.8294 1.9149 5.9989 2.4117 2.4198 4.2080 1.0007

288 rows × 29 columns

In [11]:
#violin plot for all the genes of the lung
plt.figure(figsize = (16, 6))
sns.violinplot(data = lung_integrins)
plt.title("Integrin Genes of the Lung")
plt.xlabel("Integrin Genes")
plt.ylabel("Gene Expression Levels")
plt.show()
No description has been provided for this image
In [12]:
brain_lung_integrins = integrins[integrins['primary_site'].isin(['Brain', 'Lung'])]     #filter data by organ, display both brain and lung data
brain_lung_integrins
Out[12]:
Unnamed: 0 primary_site ITGA10 ITGAD ITGAM ITGA3 ITGBL1 ITGAE ITGA2 ITGB3 ... ITGA6 ITGA2B ITGB1 ITGAL ITGA9 ITGB5 ITGA8 ITGA4 ITGA1 ITGA11
0 GTEX-13QIC-0011-R1a-SM-5O9CJ Brain 0.5763 -6.5064 2.2573 0.7832 1.0363 4.6035 2.5731 -2.8262 ... 2.8562 1.3846 5.8430 1.1316 -0.7108 3.5387 -0.0725 -0.4521 0.2029 -2.8262
1 GTEX-1399S-1726-SM-5L3DI Lung 4.9137 -3.6259 4.7307 7.1584 1.7702 4.9556 1.9149 2.6067 ... 4.2412 4.1211 7.7256 4.4900 2.9281 6.1483 5.1867 2.6185 4.7856 -0.0277
3 GTEX-QXCU-0626-SM-2TC69 Lung 4.0541 -2.3147 4.5053 7.5651 4.1788 4.1772 5.3695 1.8444 ... 4.9631 1.9149 7.9947 3.3911 2.8462 6.7683 4.1636 2.7951 5.3284 1.2147
5 GTEX-11EI6-0826-SM-5985V Lung 6.0732 -2.4659 3.9901 7.3945 4.7688 5.1157 4.3356 2.3366 ... 3.7378 4.7247 7.5016 5.1396 2.5036 6.5443 4.6531 3.8136 5.8679 0.7407
6 GTEX-S341-0326-SM-2XCAU Lung 4.2510 -5.0116 3.3076 6.1715 3.1129 5.2954 2.2960 1.1184 ... 4.7104 2.7530 7.5022 4.0730 2.6325 6.0483 5.0562 2.6962 5.1611 0.9343
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1980 GTEX-13112-0011-R4b-SM-5DUXL Brain 0.6969 -6.5064 -0.9686 2.3760 -2.2447 4.0739 -0.6193 -4.0350 ... 2.7357 1.5806 4.6882 -0.9971 -0.5756 3.5136 0.9343 -1.0862 0.4340 -2.2447
1981 GTEX-1313W-0011-R1b-SM-5EQ4A Brain 0.1124 -5.0116 2.2482 2.8897 -0.5125 4.6445 0.3115 -3.6259 ... 2.1147 0.9716 5.1202 0.6608 0.4761 3.2343 0.8408 -0.0574 -0.1828 -2.5479
1982 GTEX-QMRM-0826-SM-3NB33 Lung 5.3067 -3.8160 4.9065 7.5810 5.8714 4.7345 2.6185 3.1095 ... 5.6080 3.7324 8.2849 4.6201 3.6440 6.7052 5.1094 3.3364 5.8153 1.6604
1985 GTEX-Q2AG-2826-SM-2HMJQ Brain 3.4622 -5.5735 1.5013 5.4835 1.7702 4.7517 0.6790 -3.1714 ... 1.1960 4.1740 4.3002 0.5470 -0.9971 3.7982 -0.2498 1.4808 -0.5125 -0.5125
1986 GTEX-XV7Q-0426-SM-4BRVN Lung 2.5585 -1.7809 6.7916 6.5865 2.7051 4.9519 4.3618 3.1892 ... 3.5779 2.8974 7.7685 4.8294 1.9149 5.9989 2.4117 2.4198 4.2080 1.0007

1440 rows × 29 columns

In [23]:
# First, define the data_brain_lung variable before using it
# For example, you might need to load your data from a file:
#data_brain_lung = pd.read_csv('/Users/reneewang/Downloads/gtex_integrin_7_organs.xlsx')
brain_lung_integrins_expression_only = brain_lung_integrins.iloc[:, 1:]
brain_lung_integrins_expression_only
Out[23]:
primary_site ITGA10 ITGAD ITGAM ITGA3 ITGBL1 ITGAE ITGA2 ITGB3 ITGA7 ... ITGA6 ITGA2B ITGB1 ITGAL ITGA9 ITGB5 ITGA8 ITGA4 ITGA1 ITGA11
0 Brain 0.5763 -6.5064 2.2573 0.7832 1.0363 4.6035 2.5731 -2.8262 4.9663 ... 2.8562 1.3846 5.8430 1.1316 -0.7108 3.5387 -0.0725 -0.4521 0.2029 -2.8262
1 Lung 4.9137 -3.6259 4.7307 7.1584 1.7702 4.9556 1.9149 2.6067 3.9270 ... 4.2412 4.1211 7.7256 4.4900 2.9281 6.1483 5.1867 2.6185 4.7856 -0.0277
3 Lung 4.0541 -2.3147 4.5053 7.5651 4.1788 4.1772 5.3695 1.8444 4.5355 ... 4.9631 1.9149 7.9947 3.3911 2.8462 6.7683 4.1636 2.7951 5.3284 1.2147
5 Lung 6.0732 -2.4659 3.9901 7.3945 4.7688 5.1157 4.3356 2.3366 5.0527 ... 3.7378 4.7247 7.5016 5.1396 2.5036 6.5443 4.6531 3.8136 5.8679 0.7407
6 Lung 4.2510 -5.0116 3.3076 6.1715 3.1129 5.2954 2.2960 1.1184 5.2392 ... 4.7104 2.7530 7.5022 4.0730 2.6325 6.0483 5.0562 2.6962 5.1611 0.9343
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1980 Brain 0.6969 -6.5064 -0.9686 2.3760 -2.2447 4.0739 -0.6193 -4.0350 4.8788 ... 2.7357 1.5806 4.6882 -0.9971 -0.5756 3.5136 0.9343 -1.0862 0.4340 -2.2447
1981 Brain 0.1124 -5.0116 2.2482 2.8897 -0.5125 4.6445 0.3115 -3.6259 4.5110 ... 2.1147 0.9716 5.1202 0.6608 0.4761 3.2343 0.8408 -0.0574 -0.1828 -2.5479
1982 Lung 5.3067 -3.8160 4.9065 7.5810 5.8714 4.7345 2.6185 3.1095 5.2032 ... 5.6080 3.7324 8.2849 4.6201 3.6440 6.7052 5.1094 3.3364 5.8153 1.6604
1985 Brain 3.4622 -5.5735 1.5013 5.4835 1.7702 4.7517 0.6790 -3.1714 5.3597 ... 1.1960 4.1740 4.3002 0.5470 -0.9971 3.7982 -0.2498 1.4808 -0.5125 -0.5125
1986 Lung 2.5585 -1.7809 6.7916 6.5865 2.7051 4.9519 4.3618 3.1892 7.7121 ... 3.5779 2.8974 7.7685 4.8294 1.9149 5.9989 2.4117 2.4198 4.2080 1.0007

1440 rows × 28 columns

In [25]:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

#define wwhat is X and what is Y in your model
X=brain_lung_integrins_expression_only[['ITGA10']]
y=brain_lung_integrins_expression_only['primary_site']

#define split between train and test 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

#define the model you want to use : logistic regression
model = LogisticRegression()
model.fit(X_train, y_train)

# predict and evaluate
y_pred = model.predict(X_test)
accuracy=accuracy_score(y_test,y_pred)
print(f"Accuracy using ITGA10: {accuracy:.2f}")
Accuracy using ITGA10: 0.94
In [14]:
brain_lung_integrins = integrins[integrins['primary_site'].isin(['Brain', 'Lung'])]     #filter data by organ, display both brain and lungdata

#rearrange data
brain_lung_integrins_vertical = brain_lung_integrins_expression_only.melt(id_vars = 'primary_site', var_name = 'integrin_gene', value_name = 'expression_levels')
brain_lung_integrins_vertical
Out[14]:
primary_site integrin_gene expression_levels
0 Brain ITGA10 0.5763
1 Lung ITGA10 4.9137
2 Lung ITGA10 4.0541
3 Lung ITGA10 6.0732
4 Lung ITGA10 4.2510
... ... ... ...
38875 Brain ITGA11 -2.2447
38876 Brain ITGA11 -2.5479
38877 Lung ITGA11 1.6604
38878 Brain ITGA11 -0.5125
38879 Lung ITGA11 1.0007

38880 rows × 3 columns

In [27]:
#switch ITGA10 to ITGB4 and see how that impact its accuracy
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

#define wwhat is X and what is Y in your model
X=brain_lung_integrins_expression_only[['ITGB4']]
y=brain_lung_integrins_expression_only['primary_site']

#define split between train and test 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

#define the model you want to use : logistic regression
model = LogisticRegression()
model.fit(X_train, y_train)

# predict and evaluate
y_pred = model.predict(X_test)
accuracy=accuracy_score(y_test,y_pred)
print(f"Accuracy using ITGB4: {accuracy:.2f}")
Accuracy using ITGB4: 0.81
In [15]:
plt.figure(figsize=(16, 6))
sns.violinplot(x = 'integrin_gene', y = 'expression_levels', hue = 'primary_site', data = brain_lung_integrins_vertical, split = True, inner = 'quartile')
plt.title("Integrin Genes of the Brain vs. the Lung")
plt.xlabel("Integrin Gene")
plt.ylabel("Gene Expression Levels")
plt.legend(title = 'primary_site')
plt.show()
No description has been provided for this image
In [28]:
## model accuracy is defined as: number of correction predictions/total number of predictions
In [33]:
#AUROC curve 
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt
#Step 1: Prepare data
X = brain_lung_integrins_expression_only[['ITGB4']]  # 👈 Use your chosen integrin
y = brain_lung_integrins_expression_only['primary_site'].map({'Brain': 0, 'Lung': 1})  # Binary encoding

# Step 2: Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Step 3: Train model
model = LogisticRegression()
model.fit(X_train, y_train)

# Step 4: Predict probabilities
y_proba = model.predict_proba(X_test)[:, 1]  # Probabilities for class "Lung"

# Step 5: Compute ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_test, y_proba)
auc = roc_auc_score(y_test, y_proba)

# Step 6: Plot
plt.figure(figsize=(6, 6))
plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray')  # random guess line
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve (Brain vs Lung) using ITGB4 Expression')
plt.legend()
plt.grid(True)
plt.show()
No description has been provided for this image
In [32]:
#AUROC curve 
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt
#Step 1: Prepare data
X = brain_lung_integrins_expression_only[['ITGA10']]  # 👈 Use your chosen integrin
y = brain_lung_integrins_expression_only['primary_site'].map({'Brain': 0, 'Lung': 1})  # Binary encoding

# Step 2: Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Step 3: Train model
model = LogisticRegression()
model.fit(X_train, y_train)

# Step 4: Predict probabilities
y_proba = model.predict_proba(X_test)[:, 1]  # Probabilities for class "Lung"

# Step 5: Compute ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_test, y_proba)
auc = roc_auc_score(y_test, y_proba)

# Step 6: Plot
plt.figure(figsize=(6, 6))
plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray')  # random guess line
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve (Brain vs Lung) using ITGA10 Expression')
plt.legend()
plt.grid(True)
plt.show()
No description has been provided for this image
In [37]:
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib.pyplot as plt

# Step 1: Prepare data
X = brain_lung_integrins_expression_only[['ITGA3', 'ITGB4']]  # 👈 Include both integrins
y = brain_lung_integrins_expression_only['primary_site'].map({'Brain': 0, 'Lung': 1})  # Binary target

# Step 2: Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Step 3: Train model
model = LogisticRegression()
model.fit(X_train, y_train)

# Step 4: Predict probabilities
y_proba = model.predict_proba(X_test)[:, 1]  # Probabilities for class "Lung"

# Step 5: Compute ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_test, y_proba)
auc = roc_auc_score(y_test, y_proba)

# Step 6: Plot
plt.figure(figsize=(6, 6))
plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray')  # random guess line
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve (Brain vs Lung) using ITGA3 & ITGB4 Expression')
plt.legend()
plt.grid(True)
plt.show()
No description has been provided for this image
In [38]:
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

# Step 1: Prepare features and target
selected_genes = ['ITGA10', 'ITGB4'] 
#X = integrins.iloc[:, -27:]  # Assuming the last 27 columns are integrins
X = integrins[selected_genes]  # Assuming the last 27 columns are integrins
y = integrins['primary_site']

# Step 2: Encode organ labels as numbers
le = LabelEncoder()
y_encoded = le.fit_transform(y)

# Step 3: Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42)

# Step 4: Train multinomial logistic regression
model = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=1000)
model.fit(X_train, y_train)

# Step 5: Predict and evaluate
y_pred = model.predict(X_test)

print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred, target_names=le.classes_))

print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
#a confusion matrix is a table that summarizes the performance of a classification model. It visualizes the counts of true positives, true negatives, false positives, and false negatives, allowing for a detailed analysis of how well a model is predicting different classes. The columns typically represent predicted classes, while the rows represent actual (or true) classes. The values within the matrix represent the counts of instances that fall into each combination of predicted and actual classes. 
Accuracy: 0.7939698492462312

Classification Report:
              precision    recall  f1-score   support

 Bone Marrow       0.77      1.00      0.87        10
       Brain       0.81      0.94      0.87       247
      Breast       0.64      0.41      0.50        44
       Liver       1.00      0.65      0.79        23
        Lung       0.76      0.88      0.82        43
       Ovary       0.50      0.10      0.17        10
    Prostate       0.75      0.14      0.24        21

    accuracy                           0.79       398
   macro avg       0.75      0.59      0.61       398
weighted avg       0.78      0.79      0.77       398


Confusion Matrix:
[[ 10   0   0   0   0   0   0]
 [  3 231   3   0   8   1   1]
 [  0  25  18   0   1   0   0]
 [  0   8   0  15   0   0   0]
 [  0   4   1   0  38   0   0]
 [  0   6   0   0   3   1   0]
 [  0  12   6   0   0   0   3]]
/opt/anaconda3/lib/python3.12/site-packages/sklearn/linear_model/_logistic.py:1264: FutureWarning: 'multi_class' was deprecated in version 1.5 and will be removed in 1.7. From then on, it will always use 'multinomial'. Leave it to its default value to avoid this warning.
  warnings.warn(
In [40]:
integrins['primary_site'].value_counts()
Out[40]:
primary_site
Brain          1152
Lung            288
Breast          179
Liver           110
Prostate        100
Ovary            88
Bone Marrow      70
Name: count, dtype: int64
In [ ]: