In [2]:
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
In [4]:
integrins = pd.read_excel("/Users/reneewang/Downloads/gtex_integrin_7_organs.xlsx")
integrins
Out[4]:
Unnamed: 0 primary_site ITGA10 ITGAD ITGAM ITGA3 ITGBL1 ITGAE ITGA2 ITGB3 ... ITGA6 ITGA2B ITGB1 ITGAL ITGA9 ITGB5 ITGA8 ITGA4 ITGA1 ITGA11
0 GTEX-13QIC-0011-R1a-SM-5O9CJ Brain 0.5763 -6.5064 2.2573 0.7832 1.0363 4.6035 2.5731 -2.8262 ... 2.8562 1.3846 5.8430 1.1316 -0.7108 3.5387 -0.0725 -0.4521 0.2029 -2.8262
1 GTEX-1399S-1726-SM-5L3DI Lung 4.9137 -3.6259 4.7307 7.1584 1.7702 4.9556 1.9149 2.6067 ... 4.2412 4.1211 7.7256 4.4900 2.9281 6.1483 5.1867 2.6185 4.7856 -0.0277
2 GTEX-PWCY-1326-SM-48TCU Ovary 2.3953 -5.0116 1.4547 4.2593 -0.7346 4.4149 0.2642 1.5216 ... 3.6816 1.5465 7.2964 -0.9406 2.7742 5.0414 2.0325 0.7579 2.2573 1.2516
3 GTEX-QXCU-0626-SM-2TC69 Lung 4.0541 -2.3147 4.5053 7.5651 4.1788 4.1772 5.3695 1.8444 ... 4.9631 1.9149 7.9947 3.3911 2.8462 6.7683 4.1636 2.7951 5.3284 1.2147
4 GTEX-ZA64-1526-SM-5CVMD Breast 2.0569 -2.4659 3.3993 3.1311 3.0074 4.4977 -1.7809 2.7139 ... 4.7340 0.6332 7.3496 -0.9406 2.5338 6.5696 1.7229 -0.6416 3.1195 1.1050
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1982 GTEX-QMRM-0826-SM-3NB33 Lung 5.3067 -3.8160 4.9065 7.5810 5.8714 4.7345 2.6185 3.1095 ... 5.6080 3.7324 8.2849 4.6201 3.6440 6.7052 5.1094 3.3364 5.8153 1.6604
1983 GTEX-YFCO-1626-SM-4W1Z3 Prostate 2.9581 -4.6082 1.1641 4.6938 1.5902 5.8625 -0.5125 1.7617 ... 3.8798 -1.4699 7.5163 -0.3752 2.9562 5.3035 4.4304 -0.9406 3.6136 0.4233
1984 GTEX-1117F-2826-SM-5GZXL Breast 4.3184 -6.5064 1.0433 4.8440 3.5498 4.6809 1.0293 3.3478 ... 5.3256 -0.0725 7.7516 1.1382 2.1411 7.1132 0.3796 0.0854 3.8650 1.0151
1985 GTEX-Q2AG-2826-SM-2HMJQ Brain 3.4622 -5.5735 1.5013 5.4835 1.7702 4.7517 0.6790 -3.1714 ... 1.1960 4.1740 4.3002 0.5470 -0.9971 3.7982 -0.2498 1.4808 -0.5125 -0.5125
1986 GTEX-XV7Q-0426-SM-4BRVN Lung 2.5585 -1.7809 6.7916 6.5865 2.7051 4.9519 4.3618 3.1892 ... 3.5779 2.8974 7.7685 4.8294 1.9149 5.9989 2.4117 2.4198 4.2080 1.0007

1987 rows × 29 columns

In [5]:
#pd.set_option('display.max_rows', None)     #shows all rows, no set maximum to the number of rows displayed
#pd.set_option('display.max_columns', None)     #shows all rows, no set maximum to the number of rows displayed
#pd.reset_option('display.max_rows')      #back to default settings for rows displayed
#pd.reset_option('display.max_columns')      #back to default settings for columns displayed
brain_integrins = integrins[integrins['primary_site'] == 'Brain']
brain_integrins
Out[5]:
Unnamed: 0 primary_site ITGA10 ITGAD ITGAM ITGA3 ITGBL1 ITGAE ITGA2 ITGB3 ... ITGA6 ITGA2B ITGB1 ITGAL ITGA9 ITGB5 ITGA8 ITGA4 ITGA1 ITGA11
0 GTEX-13QIC-0011-R1a-SM-5O9CJ Brain 0.5763 -6.5064 2.2573 0.7832 1.0363 4.6035 2.5731 -2.8262 ... 2.8562 1.3846 5.8430 1.1316 -0.7108 3.5387 -0.0725 -0.4521 0.2029 -2.8262
8 GTEX-N7MS-2526-SM-26GMA Brain 2.2960 -9.9658 0.6608 5.2840 0.4233 4.8510 -0.2671 -0.1031 ... 1.5415 4.6623 3.4687 0.5666 -0.0130 3.0654 0.7916 1.0433 -0.7346 -0.7588
10 GTEX-N7MS-2526-SM-26GMR Brain -0.2498 -9.9658 -0.8863 3.1685 -1.6394 2.8158 -0.4719 -1.1488 ... 1.6045 0.9268 2.8055 -0.5973 0.4657 1.8918 0.3460 0.3907 -1.9942 -1.5522
12 GTEX-NPJ7-0011-R6a-SM-2I3G7 Brain 1.6045 -6.5064 2.3193 3.6335 -2.3147 5.0670 -0.8863 -0.8084 ... 3.2018 1.7575 4.6894 0.4125 -0.6643 3.6916 -0.6193 -2.2447 1.2023 -1.9942
14 GTEX-132Q8-3026-SM-5PNVG Brain 2.8974 -6.5064 1.9601 4.1836 -0.8084 4.5892 -0.5543 0.3460 ... 3.6018 2.7931 4.7274 -0.0574 1.2271 4.3793 0.8488 -0.2159 2.1378 -0.6416
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1977 GTEX-13G51-0011-R6b-SM-5LZX4 Brain -0.3383 -6.5064 1.6234 2.7487 -2.2447 5.2415 -0.8863 -2.9324 ... 2.1988 0.4016 4.5142 -1.1811 -0.8084 3.9983 -1.0862 -3.1714 -0.7588 -1.9379
1978 GTEX-YFC4-0011-R10a-SM-4SOK5 Brain 0.4447 -5.5735 0.3231 3.5237 -1.5105 4.9016 0.9419 -2.7274 ... 2.8178 1.3567 4.4621 -0.2845 1.0222 3.3336 0.1903 -1.0559 0.0300 -0.4719
1980 GTEX-13112-0011-R4b-SM-5DUXL Brain 0.6969 -6.5064 -0.9686 2.3760 -2.2447 4.0739 -0.6193 -4.0350 ... 2.7357 1.5806 4.6882 -0.9971 -0.5756 3.5136 0.9343 -1.0862 0.4340 -2.2447
1981 GTEX-1313W-0011-R1b-SM-5EQ4A Brain 0.1124 -5.0116 2.2482 2.8897 -0.5125 4.6445 0.3115 -3.6259 ... 2.1147 0.9716 5.1202 0.6608 0.4761 3.2343 0.8408 -0.0574 -0.1828 -2.5479
1985 GTEX-Q2AG-2826-SM-2HMJQ Brain 3.4622 -5.5735 1.5013 5.4835 1.7702 4.7517 0.6790 -3.1714 ... 1.1960 4.1740 4.3002 0.5470 -0.9971 3.7982 -0.2498 1.4808 -0.5125 -0.5125

1152 rows × 29 columns

In [7]:
#violin plot for all the genes of the brain
plt.figure(figsize = (16, 6))
sns.violinplot(data = brain_integrins)
plt.title("Integrin Genes of the Brain")
plt.xlabel("Integrin Genes")
plt.ylabel("Gene Expression Levels")
plt.show()
No description has been provided for this image
In [8]:
liver_integrins = integrins[integrins['primary_site'] == 'Liver']
liver_integrins
Out[8]:
Unnamed: 0 primary_site ITGA10 ITGAD ITGAM ITGA3 ITGBL1 ITGAE ITGA2 ITGB3 ... ITGA6 ITGA2B ITGB1 ITGAL ITGA9 ITGB5 ITGA8 ITGA4 ITGA1 ITGA11
13 GTEX-WZTO-0626-SM-4PQYY Liver -0.0277 -4.2934 -0.3201 0.4340 -1.2828 2.8055 -2.9324 -1.9379 ... 1.1960 -2.6349 4.4758 2.8582 -0.1031 4.0454 -2.5479 -1.0262 2.7465 -2.8262
49 GTEX-12WSM-0726-SM-5GCOW Liver -0.1828 -0.8339 -0.5973 0.5568 0.6880 3.1278 -3.3076 -0.7346 ... 1.0779 -2.9324 5.3169 2.5213 0.7664 4.3958 -0.7346 -1.1488 3.0110 -2.9324
62 GTEX-12WSI-0226-SM-5GCNA Liver -1.4699 -3.8160 0.5271 2.1313 2.9148 2.9984 -1.9942 -0.0277 ... 2.3164 -1.7322 6.0885 2.2813 2.8462 5.4683 -1.9942 -1.1488 3.4183 -0.0877
65 GTEX-12696-0826-SM-5EGGE Liver -0.3940 -4.6082 0.3346 -0.1504 -1.4699 2.6624 -3.0469 0.5568 ... 0.4340 -1.5522 5.4611 1.4704 0.3907 4.9538 -3.4580 -2.9324 3.4451 -3.1714
83 GTEX-1212Z-0226-SM-59HLF Liver -0.0425 -1.1488 -0.2498 0.5069 0.7916 2.9281 -2.8262 -0.4325 ... 1.4441 0.2400 5.1993 3.0287 0.9191 4.4932 -2.5479 0.0014 3.3745 -1.4699
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1923 GTEX-ZF29-2026-SM-4WWB7 Liver -1.0559 -2.3884 1.8078 -0.0425 -1.4305 2.5852 -4.0350 0.2998 ... 2.1509 -1.9942 6.6547 2.2513 2.1509 5.4283 -2.6349 -0.5973 3.9728 -2.5479
1924 GTEX-13NZB-0626-SM-5IFH6 Liver 0.8805 -5.5735 0.8164 0.9642 -1.9379 3.3952 -3.6259 -1.2828 ... 0.9862 -2.4659 5.2510 2.0844 0.7146 5.1863 -2.5479 -1.9379 3.8401 -1.5951
1930 GTEX-14E1K-0326-SM-5S2PE Liver 0.6608 -6.5064 -0.1031 -0.4325 -2.2447 3.3076 -3.6259 -1.6394 ... 1.4652 -0.9686 5.6221 2.0325 0.4761 4.9855 -4.6082 -1.6394 3.4251 -3.1714
1954 GTEX-ZVP2-0626-SM-51MSO Liver -1.1811 -2.3884 0.7058 0.6239 1.2934 3.1813 -3.4580 -1.1172 ... 1.7141 -1.7809 5.8746 2.5388 1.9302 5.1615 -2.3884 -0.5332 3.8126 -1.0262
1969 GTEX-13FTZ-0726-SM-5IFFY Liver -0.6873 -3.4580 -0.5125 -0.3566 -0.4921 3.0654 -4.0350 -1.5951 ... 0.9493 -1.9942 5.2563 2.5924 -0.3752 4.5053 -4.6082 -2.2447 3.1458 -2.8262

110 rows × 29 columns

In [10]:
#violin plot for all the genes of the liver
plt.figure(figsize = (16, 6))
sns.violinplot(data = liver_integrins)
plt.title("Integrin Genes of the Liver")
plt.xlabel("Integrin Genes")
plt.ylabel("Gene Expression Levels")
plt.show()
No description has been provided for this image
In [23]:
brain_liver_integrins = integrins[integrins['primary_site'].isin(['Brain', 'Liver'])]     #filter data by organ, display both brain and liver data
brain_liver_integrins
Out[23]:
Unnamed: 0 primary_site ITGA10 ITGAD ITGAM ITGA3 ITGBL1 ITGAE ITGA2 ITGB3 ... ITGA6 ITGA2B ITGB1 ITGAL ITGA9 ITGB5 ITGA8 ITGA4 ITGA1 ITGA11
0 GTEX-13QIC-0011-R1a-SM-5O9CJ Brain 0.5763 -6.5064 2.2573 0.7832 1.0363 4.6035 2.5731 -2.8262 ... 2.8562 1.3846 5.8430 1.1316 -0.7108 3.5387 -0.0725 -0.4521 0.2029 -2.8262
8 GTEX-N7MS-2526-SM-26GMA Brain 2.2960 -9.9658 0.6608 5.2840 0.4233 4.8510 -0.2671 -0.1031 ... 1.5415 4.6623 3.4687 0.5666 -0.0130 3.0654 0.7916 1.0433 -0.7346 -0.7588
10 GTEX-N7MS-2526-SM-26GMR Brain -0.2498 -9.9658 -0.8863 3.1685 -1.6394 2.8158 -0.4719 -1.1488 ... 1.6045 0.9268 2.8055 -0.5973 0.4657 1.8918 0.3460 0.3907 -1.9942 -1.5522
12 GTEX-NPJ7-0011-R6a-SM-2I3G7 Brain 1.6045 -6.5064 2.3193 3.6335 -2.3147 5.0670 -0.8863 -0.8084 ... 3.2018 1.7575 4.6894 0.4125 -0.6643 3.6916 -0.6193 -2.2447 1.2023 -1.9942
13 GTEX-WZTO-0626-SM-4PQYY Liver -0.0277 -4.2934 -0.3201 0.4340 -1.2828 2.8055 -2.9324 -1.9379 ... 1.1960 -2.6349 4.4758 2.8582 -0.1031 4.0454 -2.5479 -1.0262 2.7465 -2.8262
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1977 GTEX-13G51-0011-R6b-SM-5LZX4 Brain -0.3383 -6.5064 1.6234 2.7487 -2.2447 5.2415 -0.8863 -2.9324 ... 2.1988 0.4016 4.5142 -1.1811 -0.8084 3.9983 -1.0862 -3.1714 -0.7588 -1.9379
1978 GTEX-YFC4-0011-R10a-SM-4SOK5 Brain 0.4447 -5.5735 0.3231 3.5237 -1.5105 4.9016 0.9419 -2.7274 ... 2.8178 1.3567 4.4621 -0.2845 1.0222 3.3336 0.1903 -1.0559 0.0300 -0.4719
1980 GTEX-13112-0011-R4b-SM-5DUXL Brain 0.6969 -6.5064 -0.9686 2.3760 -2.2447 4.0739 -0.6193 -4.0350 ... 2.7357 1.5806 4.6882 -0.9971 -0.5756 3.5136 0.9343 -1.0862 0.4340 -2.2447
1981 GTEX-1313W-0011-R1b-SM-5EQ4A Brain 0.1124 -5.0116 2.2482 2.8897 -0.5125 4.6445 0.3115 -3.6259 ... 2.1147 0.9716 5.1202 0.6608 0.4761 3.2343 0.8408 -0.0574 -0.1828 -2.5479
1985 GTEX-Q2AG-2826-SM-2HMJQ Brain 3.4622 -5.5735 1.5013 5.4835 1.7702 4.7517 0.6790 -3.1714 ... 1.1960 4.1740 4.3002 0.5470 -0.9971 3.7982 -0.2498 1.4808 -0.5125 -0.5125

1262 rows × 29 columns

In [28]:
# First, define the data_brain_liver variable before using it
# For example, you might need to load your data from a file:
#data_brain_liver = pd.read_csv('/Users/reneewang/Downloads/gtex_integrin_7_organs.xlsx')
brain_liver_integrins_expression_only = brain_liver_integrins.iloc[:, 1:]
In [32]:
brain_liver_integrins = integrins[integrins['primary_site'].isin(['Brain', 'Liver'])]     #filter data by organ, display both brain and liver data

#rearrange data
brain_liver_integrins_vertical = brain_liver_integrins_expression_only.melt(id_vars = 'primary_site', var_name = 'integrin_gene', value_name = 'expression_levels')
brain_liver_integrins_vertical
Out[32]:
primary_site integrin_gene expression_levels
0 Brain ITGA10 0.5763
1 Brain ITGA10 2.2960
2 Brain ITGA10 -0.2498
3 Brain ITGA10 1.6045
4 Liver ITGA10 -0.0277
... ... ... ...
34069 Brain ITGA11 -1.9379
34070 Brain ITGA11 -0.4719
34071 Brain ITGA11 -2.2447
34072 Brain ITGA11 -2.5479
34073 Brain ITGA11 -0.5125

34074 rows × 3 columns

In [33]:
plt.figure(figsize=(16, 6))
sns.violinplot(x = 'integrin_gene', y = 'expression_levels', hue = 'primary_site', data = brain_liver_integrins_vertical, split = True, inner = 'quartile')
plt.title("Integrin Genes of the Brain vs. the Liver")
plt.xlabel("Integrin Gene")
plt.ylabel("Gene Expression Levels")
plt.legend(title = 'primary_site')
plt.show()
No description has been provided for this image
In [ ]: